Weighted Random Dot Product Graphs
By: Bernardo Marenco , Paola Bermolen , Marcelo Fiori and more
Potential Business Impact:
Finds hidden patterns in connected data.
Modeling of intricate relational patterns has become a cornerstone of contemporary statistical research and related data science fields. Networks, represented as graphs, offer a natural framework for this analysis. This paper extends the Random Dot Product Graph (RDPG) model to accommodate weighted graphs, markedly broadening the model's scope to scenarios where edges exhibit heterogeneous weight distributions. We propose a nonparametric weighted (W)RDPG model that assigns a sequence of latent positions to each node. Inner products of these nodal vectors specify the moments of their incident edge weights' distribution via moment-generating functions. In this way, and unlike prior art, the WRDPG can discriminate between weight distributions that share the same mean but differ in other higher-order moments. We derive statistical guarantees for an estimator of the nodal's latent positions adapted from the workhorse adjacency spectral embedding, establishing its consistency and asymptotic normality. We also contribute a generative framework that enables sampling of graphs that adhere to a (prescribed or data-fitted) WRDPG, facilitating, e.g., the analysis and testing of observed graph metrics using judicious reference distributions. The paper is organized to formalize the model's definition, the estimation (or nodal embedding) process and its guarantees, as well as the methodologies for generating weighted graphs, all complemented by illustrative and reproducible examples showcasing the WRDPG's effectiveness in various network analytic applications.
Similar Papers
Generalized Bayesian Inference for Dynamic Random Dot Product Graphs
Methodology
Predicts future connections in changing groups.
Perfect Clustering in Very Sparse Diverse Multiplex Networks
Machine Learning (Stat)
Finds hidden groups in connected data layers.
Attractor-Based Coevolving Dot Product Random Graph Model
Methodology
Shows how groups change and stick together.