Score: 0

Counterfactual Inference for Eliminating Sentiment Bias in Recommender Systems

Published: May 6, 2025 | arXiv ID: 2505.03655v1

By: Le Pan , Yuanjiang Cao , Chengkai Huang and more

Potential Business Impact:

Fixes unfair online suggestions for negative reviews.

Business Areas:
Semantic Search Internet Services

Recommender Systems (RSs) aim to provide personalized recommendations for users. A newly discovered bias, known as sentiment bias, uncovers a common phenomenon within Review-based RSs (RRSs): the recommendation accuracy of users or items with negative reviews deteriorates compared with users or items with positive reviews. Critical users and niche items are disadvantaged by such unfair recommendations. We study this problem from the perspective of counterfactual inference with two stages. At the model training stage, we build a causal graph and model how sentiment influences the final rating score. During the inference stage, we decouple the direct and indirect effects to mitigate the impact of sentiment bias and remove the indirect effect using counterfactual inference. We have conducted extensive experiments, and the results validate that our model can achieve comparable performance on rating prediction for better recommendations and effective mitigation of sentiment bias. To the best of our knowledge, this is the first work to employ counterfactual inference on sentiment bias mitigation in RSs.

Country of Origin
🇦🇺 Australia

Page Count
13 pages

Category
Computer Science:
Information Retrieval