Comparison of Visual Trackers for Biomechanical Analysis of Running
By: Luis F. Gomez , Gonzalo Garrido-Lopez , Julian Fierrez and more
Potential Business Impact:
Tracks runner's body angles for better training.
Human pose estimation has witnessed significant advancements in recent years, mainly due to the integration of deep learning models, the availability of a vast amount of data, and large computational resources. These developments have led to highly accurate body tracking systems, which have direct applications in sports analysis and performance evaluation. This work analyzes the performance of six trackers: two point trackers and four joint trackers for biomechanical analysis in sprints. The proposed framework compares the results obtained from these pose trackers with the manual annotations of biomechanical experts for more than 5870 frames. The experimental framework employs forty sprints from five professional runners, focusing on three key angles in sprint biomechanics: trunk inclination, hip flex extension, and knee flex extension. We propose a post-processing module for outlier detection and fusion prediction in the joint angles. The experimental results demonstrate that using joint-based models yields root mean squared errors ranging from 11.41{\deg} to 4.37{\deg}. When integrated with the post-processing modules, these errors can be reduced to 6.99{\deg} and 3.88{\deg}, respectively. The experimental findings suggest that human pose tracking approaches can be valuable resources for the biomechanical analysis of running. However, there is still room for improvement in applications where high accuracy is required.
Similar Papers
Paving the Way Towards Kinematic Assessment Using Monocular Video: A Preclinical Benchmark of State-of-the-Art Deep-Learning-Based 3D Human Pose Estimators Against Inertial Sensors in Daily Living Activities
CV and Pattern Recognition
Lets cameras track body movements like doctors do.
AthletePose3D: A Benchmark Dataset for 3D Human Pose Estimation and Kinematic Validation in Athletic Movements
CV and Pattern Recognition
Helps computers track athletes' fast moves better.
Physics Informed Human Posture Estimation Based on 3D Landmarks from Monocular RGB-Videos
CV and Pattern Recognition
Makes exercise apps understand your body better.