Error Analysis of Deep PDE Solvers for Option Pricing
By: Jasper Rou
Potential Business Impact:
Makes stock price predictions faster and more accurate.
Option pricing often requires solving partial differential equations (PDEs). Although deep learning-based PDE solvers have recently emerged as quick solutions to this problem, their empirical and quantitative accuracy remain not well understood, hindering their real-world applicability. In this research, our aim is to offer actionable insights into the utility of deep PDE solvers for practical option pricing implementation. Through comparative experiments in both the Black--Scholes and the Heston model, we assess the empirical performance of two neural network algorithms to solve PDEs: the Deep Galerkin Method and the Time Deep Gradient Flow method (TDGF). We determine their empirical convergence rates and training time as functions of (i) the number of sampling stages, (ii) the number of samples, (iii) the number of layers, and (iv) the number of nodes per layer. For the TDGF, we also consider the order of the discretization scheme and the number of time steps.
Similar Papers
Mathematical Modeling of Option Pricing with an Extended Black-Scholes Framework
Numerical Analysis
Helps predict stock prices more accurately.
Generalizing PDE Emulation with Equation-Aware Neural Operators
Machine Learning (CS)
AI learns to solve many math problems faster.
DD-DeepONet: Domain decomposition and DeepONet for solving partial differential equations in three application scenarios
Numerical Analysis
Solves hard math problems much faster for engineers.