Lossless Compression of Large Language Model-Generated Text via Next-Token Prediction
By: Yu Mao, Holger Pirk, Chun Jason Xue
Potential Business Impact:
Makes computer text smaller without losing information.
As large language models (LLMs) continue to be deployed and utilized across domains, the volume of LLM-generated data is growing rapidly. This trend highlights the increasing importance of effective and lossless compression for such data in modern text management systems. However, compressing LLM-generated data presents unique challenges compared to traditional human- or machine-generated content. Traditional machine-generated data is typically derived from computational processes or device outputs, often highly structured and limited to low-level elements like labels or numerical values. This structure enables conventional lossless compressors to perform efficiently. In contrast, LLM-generated data is more complex and diverse, requiring new approaches for effective compression. In this work, we conduct the first systematic investigation of lossless compression techniques tailored specifically to LLM-generated data. Notably, because LLMs are trained via next-token prediction, we find that LLM-generated data is highly predictable for the models themselves. This predictability enables LLMs to serve as efficient compressors of their own outputs. Through extensive experiments with 14 representative LLMs and 8 LLM-generated datasets from diverse domains, we show that LLM-based prediction methods achieve remarkable compression rates, exceeding 20x, far surpassing the 3x rate achieved by Gzip, a widely used general-purpose compressor. Furthermore, this advantage holds across different LLM sizes and dataset types, demonstrating the robustness and practicality of LLM-based methods in lossless text compression under generative AI workloads.
Similar Papers
Compression Laws for Large Language Models
Computation and Language
Makes big AI models smaller and faster.
Lossless Token Sequence Compression via Meta-Tokens
Computation and Language
Makes AI understand more with less text.
Learning to Compress: Unlocking the Potential of Large Language Models for Text Representation
Computation and Language
Makes computers understand writing better for searching.