CAST: Time-Varying Treatment Effects with Application to Chemotherapy and Radiotherapy on Head and Neck Squamous Cell Carcinoma
By: Everest Yang , Ria Vasishtha , Luqman K. Dad and more
Potential Business Impact:
Shows how medicine works best over time.
Causal machine learning (CML) enables individualized estimation of treatment effects, offering critical advantages over traditional correlation-based methods. However, existing approaches for medical survival data with censoring such as causal survival forests estimate effects at fixed time points, limiting their ability to capture dynamic changes over time. We introduce Causal Analysis for Survival Trajectories (CAST), a novel framework that models treatment effects as continuous functions of time following treatment. By combining parametric and non-parametric methods, CAST overcomes the limitations of discrete time-point analysis to estimate continuous effect trajectories. Using the RADCURE dataset [1] of 2,651 patients with head and neck squamous cell carcinoma (HNSCC) as a clinically relevant example, CAST models how chemotherapy and radiotherapy effects evolve over time at the population and individual levels. By capturing the temporal dynamics of treatment response, CAST reveals how treatment effects rise, peak, and decline over the follow-up period, helping clinicians determine when and for whom treatment benefits are maximized. This framework advances the application of CML to personalized care in HNSCC and other life-threatening medical conditions. Source code/data available at: https://github.com/CAST-FW/HNSCC
Similar Papers
Heterogeneous Quantile Treatment Effect Estimation for Longitudinal Data with High-Dimensional Confounding
Methodology
Finds best cancer drug for each patient.
Nonparametric Bayesian Multi-Treatment Mixture Cure Survival Model with Application in Pediatric Oncology
Methodology
Finds best cancer treatment for each child.
Nonparametric Bayesian Multi-Treatment Mixture Cure Survival Model with Application in Pediatric Oncology
Methodology
Finds best cancer treatment for each child.