HistDiST: Histopathological Diffusion-based Stain Transfer
By: Erik Großkopf , Valay Bundele , Mehran Hosseinzadeh and more
Potential Business Impact:
Turns regular tissue pictures into detailed disease maps.
Hematoxylin and Eosin (H&E) staining is the cornerstone of histopathology but lacks molecular specificity. While Immunohistochemistry (IHC) provides molecular insights, it is costly and complex, motivating H&E-to-IHC translation as a cost-effective alternative. Existing translation methods are mainly GAN-based, often struggling with training instability and limited structural fidelity, while diffusion-based approaches remain underexplored. We propose HistDiST, a Latent Diffusion Model (LDM) based framework for high-fidelity H&E-to-IHC translation. HistDiST introduces a dual-conditioning strategy, utilizing Phikon-extracted morphological embeddings alongside VAE-encoded H&E representations to ensure pathology-relevant context and structural consistency. To overcome brightness biases, we incorporate a rescaled noise schedule, v-prediction, and trailing timesteps, enforcing a zero-SNR condition at the final timestep. During inference, DDIM inversion preserves the morphological structure, while an eta-cosine noise schedule introduces controlled stochasticity, balancing structural consistency and molecular fidelity. Moreover, we propose Molecular Retrieval Accuracy (MRA), a novel pathology-aware metric leveraging GigaPath embeddings to assess molecular relevance. Extensive evaluations on MIST and BCI datasets demonstrate that HistDiST significantly outperforms existing methods, achieving a 28% improvement in MRA on the H&E-to-Ki67 translation task, highlighting its effectiveness in capturing true IHC semantics.
Similar Papers
ImplicitStainer: Data-Efficient Medical Image Translation for Virtual Antibody-based Tissue Staining Using Local Implicit Functions
Image and Video Processing
Makes doctors see hidden cell details from regular pictures.
From Pixels to Pathology: Restoration Diffusion for Diagnostic-Consistent Virtual IHC
Image and Video Processing
Makes regular tissue scans show cancer details.
Cross-Modality Learning for Predicting IHC Biomarkers from H&E-Stained Whole-Slide Images
Image and Video Processing
Predicts cancer protein spots from regular tissue pictures.