Score: 0

Image Classification Using a Diffusion Model as a Pre-Training Model

Published: May 11, 2025 | arXiv ID: 2505.06890v1

By: Kosuke Ukita, Ye Xiaolong, Tsuyoshi Okita

Potential Business Impact:

Makes AI understand medical pictures better without labels.

Business Areas:
Image Recognition Data and Analytics, Software

In this paper, we propose a diffusion model that integrates a representation-conditioning mechanism, where the representations derived from a Vision Transformer (ViT) are used to condition the internal process of a Transformer-based diffusion model. This approach enables representation-conditioned data generation, addressing the challenge of requiring large-scale labeled datasets by leveraging self-supervised learning on unlabeled data. We evaluate our method through a zero-shot classification task for hematoma detection in brain imaging. Compared to the strong contrastive learning baseline, DINOv2, our method achieves a notable improvement of +6.15% in accuracy and +13.60% in F1-score, demonstrating its effectiveness in image classification.

Country of Origin
🇯🇵 Japan

Page Count
10 pages

Category
Computer Science:
Machine Learning (CS)