Sleep Position Classification using Transfer Learning for Bed-based Pressure Sensors
By: Olivier Papillon , Rafik Goubran , James Green and more
Potential Business Impact:
Helps doctors know how you sleep without waking you.
Bed-based pressure-sensitive mats (PSMs) offer a non-intrusive way of monitoring patients during sleep. We focus on four-way sleep position classification using data collected from a PSM placed under a mattress in a sleep clinic. Sleep positions can affect sleep quality and the prevalence of sleep disorders, such as apnea. Measurements were performed on patients with suspected sleep disorders referred for assessments at a sleep clinic. Training deep learning models can be challenging in clinical settings due to the need for large amounts of labeled data. To overcome the shortage of labeled training data, we utilize transfer learning to adapt pre-trained deep learning models to accurately estimate sleep positions from a low-resolution PSM dataset collected in a polysomnography sleep lab. Our approach leverages Vision Transformer models pre-trained on ImageNet using masked autoencoding (ViTMAE) and a pre-trained model for human pose estimation (ViTPose). These approaches outperform previous work from PSM-based sleep pose classification using deep learning (TCN) as well as traditional machine learning models (SVM, XGBoost, Random Forest) that use engineered features. We evaluate the performance of sleep position classification from 112 nights of patient recordings and validate it on a higher resolution 13-patient dataset. Despite the challenges of differentiating between sleep positions from low-resolution PSM data, our approach shows promise for real-world deployment in clinical settings
Similar Papers
Sleep Stage Classification using Multimodal Embedding Fusion from EOG and PSM
CV and Pattern Recognition
Helps doctors tell sleep stages without wires.
Stanford Sleep Bench: Evaluating Polysomnography Pre-training Methods for Sleep Foundation Models
Machine Learning (CS)
Helps doctors understand sleep problems better.
PI-HMR: Towards Robust In-bed Temporal Human Shape Reconstruction with Contact Pressure Sensing
CV and Pattern Recognition
Lets beds track your body movements without cameras.