Score: 1

Beyond Basic A/B testing: Improving Statistical Efficiency for Business Growth

Published: May 13, 2025 | arXiv ID: 2505.08128v1

By: Changshuai Wei , Phuc Nguyen , Benjamin Zelditch and more

BigTech Affiliations: LinkedIn

Potential Business Impact:

Improves website tests for better business results.

Business Areas:
A/B Testing Data and Analytics

The standard A/B testing approaches are mostly based on t-test in large scale industry applications. These standard approaches however suffers from low statistical power in business settings, due to nature of small sample-size or non-Gaussian distribution or return-on-investment (ROI) consideration. In this paper, we propose several approaches to addresses these challenges: (i) regression adjustment, generalized estimating equation, Man-Whitney U and Zero-Trimmed U that addresses each of these issues separately, and (ii) a novel doubly robust generalized U that handles ROI consideration, distribution robustness and small samples in one framework. We provide theoretical results on asymptotic normality and efficiency bounds, together with insights on the efficiency gain from theoretical analysis. We further conduct comprehensive simulation studies and apply the methods to multiple real A/B tests.

Country of Origin
🇺🇸 United States

Page Count
39 pages

Category
Statistics:
Methodology