Score: 1

Model Identification Adaptive Control with $ρ$-POMDP Planning

Published: May 14, 2025 | arXiv ID: 2505.09119v2

By: Michelle Ho, Arec Jamgochian, Mykel J. Kochenderfer

BigTech Affiliations: Stanford University

Potential Business Impact:

Teaches robots to learn and control things better.

Business Areas:
Simulation Software

Accurate system modeling is crucial for safe, effective control, as misidentification can lead to accumulated errors, especially under partial observability. We address this problem by formulating informative input design and model identification adaptive control (MIAC) as belief space planning problems, modeled as partially observable Markov decision processes with belief-dependent rewards ($\rho$-POMDPs). We treat system parameters as hidden state variables that must be localized while simultaneously controlling the system. We solve this problem with an adapted belief-space iterative Linear Quadratic Regulator (BiLQR). We demonstrate it on fully and partially observable tasks for cart-pole and steady aircraft flight domains. Our method outperforms baselines such as regression, filtering, and local optimal control methods, even under instantaneous disturbances to system parameters.

Country of Origin
🇺🇸 United States

Page Count
6 pages

Category
Computer Science:
Robotics