IQBench: How "Smart'' Are Vision-Language Models? A Study with Human IQ Tests
By: Tan-Hanh Pham , Phu-Vinh Nguyen , Dang The Hung and more
Potential Business Impact:
Tests computers' smarts on picture puzzles.
Although large Vision-Language Models (VLMs) have demonstrated remarkable performance in a wide range of multimodal tasks, their true reasoning capabilities on human IQ tests remain underexplored. To advance research on the fluid intelligence of VLMs, we introduce **IQBench**, a new benchmark designed to evaluate VLMs on standardized visual IQ tests. We focus on evaluating the reasoning capabilities of VLMs, which we argue are more important than the accuracy of the final prediction. **Our benchmark is visually centric, minimizing the dependence on unnecessary textual content**, thus encouraging models to derive answers primarily from image-based information rather than learned textual knowledge. To this end, we manually collected and annotated 500 visual IQ questions to **prevent unintentional data leakage during training**. Unlike prior work that focuses primarily on the accuracy of the final answer, we evaluate the reasoning ability of the models by assessing their explanations and the patterns used to solve each problem, along with the accuracy of the final prediction and human evaluation. Our experiments show that there are substantial performance disparities between tasks, with models such as `o4-mini`, `gemini-2.5-flash`, and `claude-3.7-sonnet` achieving the highest average accuracies of 0.615, 0.578, and 0.548, respectively. However, all models struggle with 3D spatial and anagram reasoning tasks, highlighting significant limitations in current VLMs' general reasoning abilities. In terms of reasoning scores, `o4-mini`, `gemini-2.5-flash`, and `claude-3.7-sonnet` achieved top averages of 0.696, 0.586, and 0.516, respectively. These results highlight inconsistencies between the reasoning processes of the models and their final answers, emphasizing the importance of evaluating the accuracy of the reasoning in addition to the final predictions.
Similar Papers
MathSight: A Benchmark Exploring Have Vision-Language Models Really Seen in University-Level Mathematical Reasoning?
CV and Pattern Recognition
Tests if computers *really* see math problems.
VisuLogic: A Benchmark for Evaluating Visual Reasoning in Multi-modal Large Language Models
CV and Pattern Recognition
Tests if computers can truly "see" and understand.
Benchmarking Multimodal Mathematical Reasoning with Explicit Visual Dependency
CV and Pattern Recognition
Tests if computers can do math with pictures.