Score: 1

Stochastic Orthogonal Regularization for deep projective priors

Published: May 19, 2025 | arXiv ID: 2505.13078v1

By: Ali Joundi, Yann Traonmilin, Alasdair Newson

Potential Business Impact:

Makes computers fix blurry pictures faster.

Business Areas:
Image Recognition Data and Analytics, Software

Many crucial tasks of image processing and computer vision are formulated as inverse problems. Thus, it is of great importance to design fast and robust algorithms to solve these problems. In this paper, we focus on generalized projected gradient descent (GPGD) algorithms where generalized projections are realized with learned neural networks and provide state-of-the-art results for imaging inverse problems. Indeed, neural networks allow for projections onto unknown low-dimensional sets that model complex data, such as images. We call these projections deep projective priors. In generic settings, when the orthogonal projection onto a lowdimensional model set is used, it has been shown, under a restricted isometry assumption, that the corresponding orthogonal PGD converges with a linear rate, yielding near-optimal convergence (within the class of GPGD methods) in the classical case of sparse recovery. However, for deep projective priors trained with classical mean squared error losses, there is little guarantee that the hypotheses for linear convergence are satisfied. In this paper, we propose a stochastic orthogonal regularization of the training loss for deep projective priors. This regularization is motivated by our theoretical results: a sufficiently good approximation of the orthogonal projection guarantees linear stable recovery with performance close to orthogonal PGD. We show experimentally, using two different deep projective priors (based on autoencoders and on denoising networks), that our stochastic orthogonal regularization yields projections that improve convergence speed and robustness of GPGD in challenging inverse problem settings, in accordance with our theoretical findings.

Country of Origin
🇫🇷 France

Page Count
31 pages

Category
Electrical Engineering and Systems Science:
Image and Video Processing