A Novel Generative Model with Causality Constraint for Mitigating Biases in Recommender Systems
By: Jianfeng Deng , Qingfeng Chen , Debo Cheng and more
Potential Business Impact:
Makes movie suggestions better by fixing hidden mistakes.
Accurately predicting counterfactual user feedback is essential for building effective recommender systems. However, latent confounding bias can obscure the true causal relationship between user feedback and item exposure, ultimately degrading recommendation performance. Existing causal debiasing approaches often rely on strong assumptions-such as the availability of instrumental variables (IVs) or strong correlations between latent confounders and proxy variables-that are rarely satisfied in real-world scenarios. To address these limitations, we propose a novel generative framework called Latent Causality Constraints for Debiasing representation learning in Recommender Systems (LCDR). Specifically, LCDR leverages an identifiable Variational Autoencoder (iVAE) as a causal constraint to align the latent representations learned by a standard Variational Autoencoder (VAE) through a unified loss function. This alignment allows the model to leverage even weak or noisy proxy variables to recover latent confounders effectively. The resulting representations are then used to improve recommendation performance. Extensive experiments on three real-world datasets demonstrate that LCDR consistently outperforms existing methods in both mitigating bias and improving recommendation accuracy.
Similar Papers
Learning Causality for Longitudinal Data
Machine Learning (Stat)
Finds hidden causes of health problems.
CAD-VAE: Leveraging Correlation-Aware Latents for Comprehensive Fair Disentanglement
Machine Learning (CS)
Makes AI fairer by separating good and bad data.
On the Mechanisms of Collaborative Learning in VAE Recommenders
Machine Learning (CS)
Helps streaming sites recommend better movies.