Score: 1

A Novel Generative Model with Causality Constraint for Mitigating Biases in Recommender Systems

Published: May 22, 2025 | arXiv ID: 2505.16708v1

By: Jianfeng Deng , Qingfeng Chen , Debo Cheng and more

Potential Business Impact:

Makes movie suggestions better by fixing hidden mistakes.

Business Areas:
Predictive Analytics Artificial Intelligence, Data and Analytics, Software

Accurately predicting counterfactual user feedback is essential for building effective recommender systems. However, latent confounding bias can obscure the true causal relationship between user feedback and item exposure, ultimately degrading recommendation performance. Existing causal debiasing approaches often rely on strong assumptions-such as the availability of instrumental variables (IVs) or strong correlations between latent confounders and proxy variables-that are rarely satisfied in real-world scenarios. To address these limitations, we propose a novel generative framework called Latent Causality Constraints for Debiasing representation learning in Recommender Systems (LCDR). Specifically, LCDR leverages an identifiable Variational Autoencoder (iVAE) as a causal constraint to align the latent representations learned by a standard Variational Autoencoder (VAE) through a unified loss function. This alignment allows the model to leverage even weak or noisy proxy variables to recover latent confounders effectively. The resulting representations are then used to improve recommendation performance. Extensive experiments on three real-world datasets demonstrate that LCDR consistently outperforms existing methods in both mitigating bias and improving recommendation accuracy.

Country of Origin
πŸ‡¨πŸ‡³ πŸ‡¦πŸ‡Ί Australia, China

Page Count
11 pages

Category
Computer Science:
Information Retrieval