LARES: Latent Reasoning for Sequential Recommendation
By: Enze Liu , Bowen Zheng , Xiaolei Wang and more
Potential Business Impact:
Helps computers guess what you'll like next.
Sequential recommender systems have become increasingly important in real-world applications that model user behavior sequences to predict their preferences. However, existing sequential recommendation methods predominantly rely on non-reasoning paradigms, which may limit the model's computational capacity and result in suboptimal recommendation performance. To address these limitations, we present LARES, a novel and scalable LAtent REasoning framework for Sequential recommendation that enhances model's representation capabilities through increasing the computation density of parameters by depth-recurrent latent reasoning. Our proposed approach employs a recurrent architecture that allows flexible expansion of reasoning depth without increasing parameter complexity, thereby effectively capturing dynamic and intricate user interest patterns. A key difference of LARES lies in refining all input tokens at each implicit reasoning step to improve the computation utilization. To fully unlock the model's reasoning potential, we design a two-phase training strategy: (1) Self-supervised pre-training (SPT) with dual alignment objectives; (2) Reinforcement post-training (RPT). During the first phase, we introduce trajectory-level alignment and step-level alignment objectives, which enable the model to learn recommendation-oriented latent reasoning patterns without requiring supplementary annotated data. The subsequent phase utilizes reinforcement learning (RL) to harness the model's exploratory ability, further refining its reasoning capabilities. Comprehensive experiments on real-world benchmarks demonstrate our framework's superior performance. Notably, LARES exhibits seamless compatibility with existing advanced models, further improving their recommendation performance. Our code is available at https://anonymous.4open.science/r/LARES-E458/.
Similar Papers
Parallel Latent Reasoning for Sequential Recommendation
Information Retrieval
Finds what you like by trying many ideas.
Reinforced Latent Reasoning for LLM-based Recommendation
Artificial Intelligence
Helps computers recommend things better, faster.
Bridging Search and Recommendation through Latent Cross Reasoning
Information Retrieval
Finds better videos by understanding your searches.