Score: 1

Tropical Attention: Neural Algorithmic Reasoning for Combinatorial Algorithms

Published: May 22, 2025 | arXiv ID: 2505.17190v1

By: Baran Hashemi , Kurt Pasque , Chris Teska and more

Potential Business Impact:

Makes computers solve hard problems better.

Business Areas:
Natural Language Processing Artificial Intelligence, Data and Analytics, Software

Dynamic programming (DP) algorithms for combinatorial optimization problems work with taking maximization, minimization, and classical addition in their recursion algorithms. The associated value functions correspond to convex polyhedra in the max plus semiring. Existing Neural Algorithmic Reasoning models, however, rely on softmax-normalized dot-product attention where the smooth exponential weighting blurs these sharp polyhedral structures and collapses when evaluated on out-of-distribution (OOD) settings. We introduce Tropical attention, a novel attention function that operates natively in the max-plus semiring of tropical geometry. We prove that Tropical attention can approximate tropical circuits of DP-type combinatorial algorithms. We then propose that using Tropical transformers enhances empirical OOD performance in both length generalization and value generalization, on algorithmic reasoning tasks, surpassing softmax baselines while remaining stable under adversarial attacks. We also present adversarial-attack generalization as a third axis for Neural Algorithmic Reasoning benchmarking. Our results demonstrate that Tropical attention restores the sharp, scale-invariant reasoning absent from softmax.

Country of Origin
πŸ‡ΊπŸ‡Έ πŸ‡©πŸ‡ͺ United States, Germany

Page Count
18 pages

Category
Computer Science:
Machine Learning (CS)