Anytime-valid, Bayes-assisted,Prediction-Powered Inference
By: Valentin Kilian, Stefano Cortinovis, François Caron
Potential Business Impact:
Uses predictions to make data analysis more accurate.
Given a large pool of unlabelled data and a smaller amount of labels, prediction-powered inference (PPI) leverages machine learning predictions to increase the statistical efficiency of standard confidence interval procedures based solely on labelled data, while preserving their fixed-time validity. In this paper, we extend the PPI framework to the sequential setting, where labelled and unlabelled datasets grow over time. Exploiting Ville's inequality and the method of mixtures, we propose prediction-powered confidence sequence procedures that are valid uniformly over time and naturally accommodate prior knowledge on the quality of the predictions to further boost efficiency. We carefully illustrate the design choices behind our method and demonstrate its effectiveness in real and synthetic examples.
Similar Papers
Prediction-Powered Inference with Inverse Probability Weighting
Machine Learning (Stat)
Improves guessing with less data.
FAB-PPI: Frequentist, Assisted by Bayes, Prediction-Powered Inference
Machine Learning (Stat)
Makes science answers more sure and faster.
Prediction-Powered Semi-Supervised Learning with Online Power Tuning
Machine Learning (CS)
Improves computer learning using fake labels.