AI-Researcher: Autonomous Scientific Innovation
By: Jiabin Tang , Lianghao Xia , Zhonghang Li and more
Potential Business Impact:
AI writes and does science research papers.
The powerful reasoning capabilities of Large Language Models (LLMs) in mathematics and coding, combined with their ability to automate complex tasks through agentic frameworks, present unprecedented opportunities for accelerating scientific innovation. In this paper, we introduce AI-Researcher, a fully autonomous research system that transforms how AI-driven scientific discovery is conducted and evaluated. Our framework seamlessly orchestrates the complete research pipeline--from literature review and hypothesis generation to algorithm implementation and publication-ready manuscript preparation--with minimal human intervention. To rigorously assess autonomous research capabilities, we develop Scientist-Bench, a comprehensive benchmark comprising state-of-the-art papers across diverse AI research domains, featuring both guided innovation and open-ended exploration tasks. Through extensive experiments, we demonstrate that AI-Researcher achieves remarkable implementation success rates and produces research papers that approach human-level quality. This work establishes new foundations for autonomous scientific innovation that can complement human researchers by systematically exploring solution spaces beyond cognitive limitations.
Similar Papers
SR-Scientist: Scientific Equation Discovery With Agentic AI
Artificial Intelligence
AI scientist finds science rules by testing code.
InnovatorBench: Evaluating Agents' Ability to Conduct Innovative LLM Research
Artificial Intelligence
Tests AI's ability to do real science research.
InnovatorBench: Evaluating Agents' Ability to Conduct Innovative LLM Research
Artificial Intelligence
Tests AI to help scientists discover new things faster.