HIT Model: A Hierarchical Interaction-Enhanced Two-Tower Model for Pre-Ranking Systems
By: Haoqiang Yang , Congde Yuan , Kun Bai and more
Potential Business Impact:
Shows ads people actually want to see.
Online display advertising platforms rely on pre-ranking systems to efficiently filter and prioritize candidate ads from large corpora, balancing relevance to users with strict computational constraints. The prevailing two-tower architecture, though highly efficient due to its decoupled design and pre-caching, suffers from cross-domain interaction and coarse similarity metrics, undermining its capacity to model complex user-ad relationships. In this study, we propose the Hierarchical Interaction-Enhanced Two-Tower (HIT) model, a new architecture that augments the two-tower paradigm with two key components: $\textit{generators}$ that pre-generate holistic vectors incorporating coarse-grained user-ad interactions through a dual-generator framework with a cosine-similarity-based generation loss as the training objective, and $\textit{multi-head representers}$ that project embeddings into multiple latent subspaces to capture fine-grained, multi-faceted user interests and multi-dimensional ad attributes. This design enhances modeling effectiveness without compromising inference efficiency. Extensive experiments on public datasets and large-scale online A/B testing on Tencent's advertising platform demonstrate that HIT significantly outperforms several baselines in relevance metrics, yielding a $1.66\%$ increase in Gross Merchandise Volume and a $1.55\%$ improvement in Return on Investment, alongside similar serving latency to the vanilla two-tower models. The HIT model has been successfully deployed in Tencent's online display advertising system, serving billions of impressions daily. The code is available at https://github.com/HarveyYang123/HIT_model.
Similar Papers
A Learnable Fully Interacted Two-Tower Model for Pre-Ranking System
Information Retrieval
Improves movie suggestions by better matching users and movies.
Unleashing the Potential of Two-Tower Models: Diffusion-Based Cross-Interaction for Large-Scale Matching
Information Retrieval
Helps apps guess what you'll like next.
InteractRank: Personalized Web-Scale Search Pre-Ranking with Cross Interaction Features
Information Retrieval
Finds better stuff for you faster.