Score: 1

Active Learning via Vision-Language Model Adaptation with Open Data

Published: June 2, 2025 | arXiv ID: 2506.01724v1

By: Tong Wang, Jiaqi Wang, Shu Kong

Potential Business Impact:

Makes AI learn better with less labeled data.

Business Areas:
Natural Language Processing Artificial Intelligence, Data and Analytics, Software

Pretrained on web-scale open data, VLMs offer powerful capabilities for solving downstream tasks after being adapted to task-specific labeled data. Yet, data labeling can be expensive and may demand domain expertise. Active Learning (AL) aims to reduce this expense by strategically selecting the most informative data for labeling and model training. Recent AL methods have explored VLMs but have not leveraged publicly available open data, such as VLM's pretraining data. In this work, we leverage such data by retrieving task-relevant examples to augment the task-specific examples. As expected, incorporating them significantly improves AL. Given that our method exploits open-source VLM and open data, we refer to it as Active Learning with Open Resources (ALOR). Additionally, most VLM-based AL methods use prompt tuning (PT) for model adaptation, likely due to its ability to directly utilize pretrained parameters and the assumption that doing so reduces the risk of overfitting to limited labeled data. We rigorously compare popular adaptation approaches, including linear probing (LP), finetuning (FT), and contrastive tuning (CT). We reveal two key findings: (1) All adaptation approaches benefit from incorporating retrieved data, and (2) CT resoundingly outperforms other approaches across AL methods. Further analysis of retrieved data reveals a naturally imbalanced distribution of task-relevant classes, exposing inherent biases within the VLM. This motivates our novel Tail First Sampling (TFS) strategy for AL, an embarrassingly simple yet effective method that prioritizes sampling data from underrepresented classes to label. Extensive experiments demonstrate that our final method, contrastively finetuning VLM on both retrieved and TFS-selected labeled data, significantly outperforms existing methods.

Page Count
23 pages

Category
Computer Science:
CV and Pattern Recognition