Score: 1

Building a Recommendation System Using Amazon Product Co-Purchasing Network

Published: June 3, 2025 | arXiv ID: 2506.02482v1

By: Minghao Liu, Catherine Zhao, Nathan Zhou

Potential Business Impact:

Suggests new items customers will like.

Business Areas:
Personalization Commerce and Shopping

This project develops an online, inductive recommendation system for newly listed products on e-commerce platforms, focusing on suggesting relevant new items to customers as they purchase other products. Using the Amazon Product Co-Purchasing Network Metadata dataset, we construct a co-purchasing graph where nodes represent products and edges capture co-purchasing relationships. To address the challenge of recommending new products with limited information, we apply a modified GraphSAGE method for link prediction. This inductive approach leverages both product features and the existing co-purchasing graph structure to predict potential co-purchasing relationships, enabling the model to generalize to unseen products. As an online method, it updates in real time, making it scalable and adaptive to evolving product catalogs. Experimental results demonstrate that our approach outperforms baseline algorithms in predicting relevant product links, offering a promising solution for enhancing the relevance of new product recommendations in e-commerce environments. All code is available at https://github.com/cse416a-fl24/final-project-l-minghao_z-catherine_z-nathan.git.

Repos / Data Links

Page Count
7 pages

Category
Computer Science:
Social and Information Networks