One-Step Diffusion-based Real-World Image Super-Resolution with Visual Perception Distillation
By: Xue Wu , Jingwei Xin , Zhijun Tu and more
Potential Business Impact:
Makes blurry pictures clear in one step.
Diffusion-based models have been widely used in various visual generation tasks, showing promising results in image super-resolution (SR), while typically being limited by dozens or even hundreds of sampling steps. Although existing methods aim to accelerate the inference speed of multi-step diffusion-based SR methods through knowledge distillation, their generated images exhibit insufficient semantic alignment with real images, resulting in suboptimal perceptual quality reconstruction, specifically reflected in the CLIPIQA score. These methods still have many challenges in perceptual quality and semantic fidelity. Based on the challenges, we propose VPD-SR, a novel visual perception diffusion distillation framework specifically designed for SR, aiming to construct an effective and efficient one-step SR model. Specifically, VPD-SR consists of two components: Explicit Semantic-aware Supervision (ESS) and High-Frequency Perception (HFP) loss. Firstly, the ESS leverages the powerful visual perceptual understanding capabilities of the CLIP model to extract explicit semantic supervision, thereby enhancing semantic consistency. Then, Considering that high-frequency information contributes to the visual perception quality of images, in addition to the vanilla distillation loss, the HFP loss guides the student model to restore the missing high-frequency details in degraded images that are critical for enhancing perceptual quality. Lastly, we expand VPD-SR in adversarial training manner to further enhance the authenticity of the generated content. Extensive experiments conducted on synthetic and real-world datasets demonstrate that the proposed VPD-SR achieves superior performance compared to both previous state-of-the-art methods and the teacher model with just one-step sampling.
Similar Papers
One-Step Residual Shifting Diffusion for Image Super-Resolution via Distillation
CV and Pattern Recognition
Makes blurry pictures sharp, fast, and real.
OS-DiffVSR: Towards One-step Latent Diffusion Model for High-detailed Real-world Video Super-Resolution
CV and Pattern Recognition
Makes blurry videos clear, fast.
Zero-shot Adaptation of Stable Diffusion via Plug-in Hierarchical Degradation Representation for Real-World Super-Resolution
CV and Pattern Recognition
Makes blurry pictures sharp and clear.