A Survey of Deep Learning Video Super-Resolution
By: Arbind Agrahari Baniya , Tsz-Kwan Lee , Peter Eklund and more
Potential Business Impact:
Makes blurry videos clear and sharp.
Video super-resolution (VSR) is a prominent research topic in low-level computer vision, where deep learning technologies have played a significant role. The rapid progress in deep learning and its applications in VSR has led to a proliferation of tools and techniques in the literature. However, the usage of these methods is often not adequately explained, and decisions are primarily driven by quantitative improvements. Given the significance of VSR's potential influence across multiple domains, it is imperative to conduct a comprehensive analysis of the elements and deep learning methodologies employed in VSR research. This methodical analysis will facilitate the informed development of models tailored to specific application needs. In this paper, we present an overarching overview of deep learning-based video super-resolution models, investigating each component and discussing its implications. Furthermore, we provide a synopsis of key components and technologies employed by state-of-the-art and earlier VSR models. By elucidating the underlying methodologies and categorising them systematically, we identified trends, requirements, and challenges in the domain. As a first-of-its-kind survey of deep learning-based VSR models, this work also establishes a multi-level taxonomy to guide current and future VSR research, enhancing the maturation and interpretation of VSR practices for various practical applications.
Similar Papers
ICME 2025 Grand Challenge on Video Super-Resolution for Video Conferencing
Image and Video Processing
Makes blurry videos sharp and clear.
RepNet-VSR: Reparameterizable Architecture for High-Fidelity Video Super-Resolution
Image and Video Processing
Makes blurry videos sharp on phones.
Omnidirectional Video Super-Resolution using Deep Learning
Multimedia
Makes 360 videos clearer for virtual reality.