Directional Non-Commutative Monoidal Embeddings for MNIST
By: Mahesh Godavarti
Potential Business Impact:
Learns better ways to understand pictures.
We present an empirical validation of the directional non-commutative monoidal embedding framework recently introduced in prior work~\cite{Godavarti2025monoidal}. This framework defines learnable compositional embeddings using distinct non-commutative operators per dimension (axis) that satisfy an interchange law, generalizing classical one-dimensional transforms. Our primary goal is to verify that this framework can effectively model real data by applying it to a controlled, well-understood task: image classification on the MNIST dataset~\cite{lecun1998gradient}. A central hypothesis for why the proposed monoidal embedding works well is that it generalizes the Discrete Fourier Transform (DFT)~\cite{oppenheim1999discrete} by learning task-specific frequency components instead of using fixed basis frequencies. We test this hypothesis by comparing learned monoidal embeddings against fixed DFT-based embeddings on MNIST. The results show that as the embedding dimensionality decreases (e.g., from 32 to 8 to 2), the performance gap between the learned monoidal embeddings and fixed DFT-based embeddings on MNIST grows increasingly large. This comparison is used as an analytic tool to explain why the framework performs well: the learnable embeddings can capture the most discriminative spectral components for the task. Overall, our experiments confirm that directional non-commutative monoidal embeddings are highly effective for representing image data, offering a compact learned representation that retains high task performance. The code used in this work is available at https://github.com/mahesh-godavarti/directional_composition_mnist.
Similar Papers
Directional Non-Commutative Monoidal Structures with Interchange Law via Commutative Generators
Machine Learning (CS)
Unifies math tools for better data understanding.
Parameter-Efficient Transformer Embeddings
Computation and Language
Makes AI understand words using less computer memory.
Learning Mappings in Mesh-based Simulations
Machine Learning (CS)
Helps computers understand complex shapes for science.