Score: 2

Benchmarking Misuse Mitigation Against Covert Adversaries

Published: June 6, 2025 | arXiv ID: 2506.06414v1

By: Davis Brown , Mahdi Sabbaghi , Luze Sun and more

Potential Business Impact:

Helps AI avoid helping bad guys do bad things.

Business Areas:
Penetration Testing Information Technology, Privacy and Security

Existing language model safety evaluations focus on overt attacks and low-stakes tasks. Realistic attackers can subvert current safeguards by requesting help on small, benign-seeming tasks across many independent queries. Because individual queries do not appear harmful, the attack is hard to {detect}. However, when combined, these fragments uplift misuse by helping the attacker complete hard and dangerous tasks. Toward identifying defenses against such strategies, we develop Benchmarks for Stateful Defenses (BSD), a data generation pipeline that automates evaluations of covert attacks and corresponding defenses. Using this pipeline, we curate two new datasets that are consistently refused by frontier models and are too difficult for weaker open-weight models. Our evaluations indicate that decomposition attacks are effective misuse enablers, and highlight stateful defenses as a countermeasure.

Country of Origin
🇺🇸 United States


Page Count
24 pages

Category
Computer Science:
Cryptography and Security