Score: 2

Multi-Step Visual Reasoning with Visual Tokens Scaling and Verification

Published: June 8, 2025 | arXiv ID: 2506.07235v1

By: Tianyi Bai , Zengjie Hu , Fupeng Sun and more

Potential Business Impact:

Lets computers see and think better.

Business Areas:
Image Recognition Data and Analytics, Software

Multi-modal large language models (MLLMs) have achieved remarkable capabilities by integrating visual perception with language understanding, enabling applications such as image-grounded dialogue, visual question answering, and scientific analysis. However, most MLLMs adopt a static inference paradigm, encoding the entire image into fixed visual tokens upfront, which limits their ability to iteratively refine understanding or adapt to context during inference. This contrasts sharply with human perception, which is dynamic, selective, and feedback-driven. In this work, we introduce a novel framework for inference-time visual token scaling that enables MLLMs to perform iterative, verifier-guided reasoning over visual content. We formulate the problem as a Markov Decision Process, involving a reasoner that proposes visual actions and a verifier, which is trained via multi-step Direct Preference Optimization (DPO), that evaluates these actions and determines when reasoning should terminate. To support this, we present a new dataset, VTS, comprising supervised reasoning trajectories (VTS-SFT) and preference-labeled reasoning comparisons (VTS-DPO). Our method significantly outperforms existing approaches across diverse visual reasoning benchmarks, offering not only improved accuracy but also more interpretable and grounded reasoning processes. These results demonstrate the promise of dynamic inference mechanisms for enabling fine-grained, context-aware visual reasoning in next-generation MLLMs.

Country of Origin
🇭🇰 🇨🇳 Hong Kong, China

Repos / Data Links

Page Count
28 pages

Category
Computer Science:
CV and Pattern Recognition