Prompt to Protection: A Comparative Study of Multimodal LLMs in Construction Hazard Recognition
By: Nishi Chaudhary , S M Jamil Uddin , Sathvik Sharath Chandra and more
Potential Business Impact:
Helps AI spot dangers on building sites.
The recent emergence of multimodal large language models (LLMs) has introduced new opportunities for improving visual hazard recognition on construction sites. Unlike traditional computer vision models that rely on domain-specific training and extensive datasets, modern LLMs can interpret and describe complex visual scenes using simple natural language prompts. However, despite growing interest in their applications, there has been limited investigation into how different LLMs perform in safety-critical visual tasks within the construction domain. To address this gap, this study conducts a comparative evaluation of five state-of-the-art LLMs: Claude-3 Opus, GPT-4.5, GPT-4o, GPT-o3, and Gemini 2.0 Pro, to assess their ability to identify potential hazards from real-world construction images. Each model was tested under three prompting strategies: zero-shot, few-shot, and chain-of-thought (CoT). Zero-shot prompting involved minimal instruction, few-shot incorporated basic safety context and a hazard source mnemonic, and CoT provided step-by-step reasoning examples to scaffold model thinking. Quantitative analysis was performed using precision, recall, and F1-score metrics across all conditions. Results reveal that prompting strategy significantly influenced performance, with CoT prompting consistently producing higher accuracy across models. Additionally, LLM performance varied under different conditions, with GPT-4.5 and GPT-o3 outperforming others in most settings. The findings also demonstrate the critical role of prompt design in enhancing the accuracy and consistency of multimodal LLMs for construction safety applications. This study offers actionable insights into the integration of prompt engineering and LLMs for practical hazard recognition, contributing to the development of more reliable AI-assisted safety systems.
Similar Papers
Using Vision Language Models for Safety Hazard Identification in Construction
CV and Pattern Recognition
Finds hidden dangers on building sites.
Red Teaming Multimodal Language Models: Evaluating Harm Across Prompt Modalities and Models
Computation and Language
Tests AI to see if it says bad things.
The Future of MLLM Prompting is Adaptive: A Comprehensive Experimental Evaluation of Prompt Engineering Methods for Robust Multimodal Performance
Artificial Intelligence
Teaches AI to understand pictures and words better.