3D-Aware Vision-Language Models Fine-Tuning with Geometric Distillation
By: Seonho Lee , Jiho Choi , Inha Kang and more
Potential Business Impact:
Teaches computers to understand 3D space better.
Vision-Language Models (VLMs) have shown remarkable performance on diverse visual and linguistic tasks, yet they remain fundamentally limited in their understanding of 3D spatial structures. We propose Geometric Distillation, a lightweight, annotation-free fine-tuning framework that injects human-inspired geometric cues into pretrained VLMs without modifying their architecture. By distilling (1) sparse correspondences, (2) relative depth relations, and (3) dense cost volumes from off-the-shelf 3D foundation models (e.g., MASt3R, VGGT), our method shapes representations to be geometry-aware while remaining compatible with natural image-text inputs. Through extensive evaluations on 3D vision-language reasoning and 3D perception benchmarks, our method consistently outperforms prior approaches, achieving improved 3D spatial reasoning with significantly lower computational cost. Our work demonstrates a scalable and efficient path to bridge 2D-trained VLMs with 3D understanding, opening up wider use in spatially grounded multimodal tasks.
Similar Papers
Let Language Constrain Geometry: Vision-Language Models as Semantic and Spatial Critics for 3D Generation
CV and Pattern Recognition
Makes 3D pictures match words better.
G$^2$VLM: Geometry Grounded Vision Language Model with Unified 3D Reconstruction and Spatial Reasoning
CV and Pattern Recognition
Teaches computers to understand 3D space from pictures.
G$^2$VLM: Geometry Grounded Vision Language Model with Unified 3D Reconstruction and Spatial Reasoning
CV and Pattern Recognition
Helps computers understand 3D space from pictures.