Causal Climate Emulation with Bayesian Filtering
By: Sebastian Hickman , Ilija Trajkovic , Julia Kaltenborn and more
Potential Business Impact:
Makes climate predictions faster and more accurate.
Traditional models of climate change use complex systems of coupled equations to simulate physical processes across the Earth system. These simulations are highly computationally expensive, limiting our predictions of climate change and analyses of its causes and effects. Machine learning has the potential to quickly emulate data from climate models, but current approaches are not able to incorporate physics-informed causal relationships. Here, we develop an interpretable climate model emulator based on causal representation learning. We derive a physics-informed approach including a Bayesian filter for stable long-term autoregressive emulation. We demonstrate that our emulator learns accurate climate dynamics, and we show the importance of each one of its components on a realistic synthetic dataset and data from two widely deployed climate models.
Similar Papers
Probabilistic Emulation of the Community Radiative Transfer Model Using Machine Learning
Atmospheric and Oceanic Physics
Makes weather forecasts more accurate and faster.
Bridging Idealized and Operational Models: An Explainable AI Framework for Earth System Emulators
Machine Learning (CS)
Improves weather forecasts by combining simple and complex models.
Prototype-enhanced prediction in graph neural networks for climate applications
Machine Learning (CS)
Makes computer weather predictions more accurate.