Score: 1

Cross-Domain Conditional Diffusion Models for Time Series Imputation

Published: June 14, 2025 | arXiv ID: 2506.12412v1

By: Kexin Zhang , Baoyu Jing , K. Selçuk Candan and more

Potential Business Impact:

Fixes missing data in different kinds of charts.

Business Areas:
Predictive Analytics Artificial Intelligence, Data and Analytics, Software

Cross-domain time series imputation is an underexplored data-centric research task that presents significant challenges, particularly when the target domain suffers from high missing rates and domain shifts in temporal dynamics. Existing time series imputation approaches primarily focus on the single-domain setting, which cannot effectively adapt to a new domain with domain shifts. Meanwhile, conventional domain adaptation techniques struggle with data incompleteness, as they typically assume the data from both source and target domains are fully observed to enable adaptation. For the problem of cross-domain time series imputation, missing values introduce high uncertainty that hinders distribution alignment, making existing adaptation strategies ineffective. Specifically, our proposed solution tackles this problem from three perspectives: (i) Data: We introduce a frequency-based time series interpolation strategy that integrates shared spectral components from both domains while retaining domain-specific temporal structures, constructing informative priors for imputation. (ii) Model: We design a diffusion-based imputation model that effectively learns domain-shared representations and captures domain-specific temporal dependencies with dedicated denoising networks. (iii) Algorithm: We further propose a cross-domain consistency alignment strategy that selectively regularizes output-level domain discrepancies, enabling effective knowledge transfer while preserving domain-specific characteristics. Extensive experiments on three real-world datasets demonstrate the superiority of our proposed approach. Our code implementation is available here.

Country of Origin
🇺🇸 United States

Repos / Data Links

Page Count
17 pages

Category
Computer Science:
Machine Learning (CS)