Unleashing Diffusion and State Space Models for Medical Image Segmentation
By: Rong Wu , Ziqi Chen , Liming Zhong and more
Potential Business Impact:
Finds new kinds of sickness in medical pictures.
Existing segmentation models trained on a single medical imaging dataset often lack robustness when encountering unseen organs or tumors. Developing a robust model capable of identifying rare or novel tumor categories not present during training is crucial for advancing medical imaging applications. We propose DSM, a novel framework that leverages diffusion and state space models to segment unseen tumor categories beyond the training data. DSM utilizes two sets of object queries trained within modified attention decoders to enhance classification accuracy. Initially, the model learns organ queries using an object-aware feature grouping strategy to capture organ-level visual features. It then refines tumor queries by focusing on diffusion-based visual prompts, enabling precise segmentation of previously unseen tumors. Furthermore, we incorporate diffusion-guided feature fusion to improve semantic segmentation performance. By integrating CLIP text embeddings, DSM captures category-sensitive classes to improve linguistic transfer knowledge, thereby enhancing the model's robustness across diverse scenarios and multi-label tasks. Extensive experiments demonstrate the superior performance of DSM in various tumor segmentation tasks. Code is available at https://github.com/Rows21/k-Means_Mask_Mamba.
Similar Papers
TextDiffSeg: Text-guided Latent Diffusion Model for 3d Medical Images Segmentation
Image and Video Processing
Helps doctors see inside bodies better with words.
UniSegDiff: Boosting Unified Lesion Segmentation via a Staged Diffusion Model
Image and Video Processing
Finds sickness in body scans better.
Semi-Supervised Biomedical Image Segmentation via Diffusion Models and Teacher-Student Co-Training
CV and Pattern Recognition
Helps doctors find sickness in scans with less data.