Hierarchical Group-wise Ranking Framework for Recommendation Models
By: YaChen Yan, Liubo Li, Ravi Choudhary
Potential Business Impact:
Makes online suggestions show you better things.
In modern recommender systems, CTR/CVR models are increasingly trained with ranking objectives to improve item ranking quality. While this shift aligns training more closely with serving goals, most existing methods rely on in-batch negative sampling, which predominantly surfaces easy negatives. This limits the model's ability to capture fine-grained user preferences and weakens overall ranking performance. To address this, we propose a Hierarchical Group-wise Ranking Framework with two key components. First, we apply residual vector quantization to user embeddings to generate hierarchical user codes that partition users into hierarchical, trie-structured clusters. Second, we apply listwise ranking losses to user-item pairs at each level of the hierarchy, where shallow levels group loosely similar users and deeper levels group highly similar users, reinforcing learning-to-rank signals through progressively harder negatives. Since users with similar preferences and content exposure tend to yield more informative negatives, applying ranking losses within these hierarchical user groups serves as an effective approximation of hard negative mining. Our approach improves ranking performance without requiring complex real-time context collection or retrieval infrastructure. Extensive experiments demonstrate that the proposed framework consistently enhances both model calibration and ranking accuracy, offering a scalable and practical solution for industrial recommender systems.
Similar Papers
GroupRank: A Groupwise Reranking Paradigm Driven by Reinforcement Learning
Information Retrieval
Helps computers find better answers by comparing groups.
Improving Minimax Group Fairness in Sequential Recommendation
Information Retrieval
Helps everyone get good recommendations, not just popular stuff.
Consensus-aware Contrastive Learning for Group Recommendation
Information Retrieval
Suggests movies everyone in a group will like.