Score: 0

Magnetoencephalography (MEG) Based Non-Invasive Chinese Speech Decoding

Published: June 15, 2025 | arXiv ID: 2506.12817v1

By: Zhihong Jia , Hongbin Wang , Yuanzhong Shen and more

Potential Business Impact:

Lets people talk using brain signals.

Business Areas:
Speech Recognition Data and Analytics, Software

As an emerging paradigm of brain-computer interfaces (BCIs), speech BCI has the potential to directly reflect auditory perception and thoughts, offering a promising communication alternative for patients with aphasia. Chinese is one of the most widely spoken languages in the world, whereas there is very limited research on speech BCIs for Chinese language. This paper reports a text-magnetoencephalography (MEG) dataset for non-invasive Chinese speech BCIs. It also proposes a multi-modality assisted speech decoding (MASD) algorithm to capture both text and acoustic information embedded in brain signals during speech activities. Experiment results demonstrated the effectiveness of both our text-MEG dataset and our proposed MASD algorithm. To our knowledge, this is the first study on modality-assisted decoding for non-invasive speech BCIs.

Country of Origin
🇨🇳 China

Page Count
18 pages

Category
Electrical Engineering and Systems Science:
Audio and Speech Processing