Score: 1

Uncertainty-Aware Graph Neural Networks: A Multi-Hop Evidence Fusion Approach

Published: June 16, 2025 | arXiv ID: 2506.13083v1

By: Qingfeng Chen , Shiyuan Li , Yixin Liu and more

Potential Business Impact:

Makes computer predictions more trustworthy and accurate.

Business Areas:
Power Grid Energy

Graph neural networks (GNNs) excel in graph representation learning by integrating graph structure and node features. Existing GNNs, unfortunately, fail to account for the uncertainty of class probabilities that vary with the depth of the model, leading to unreliable and risky predictions in real-world scenarios. To bridge the gap, in this paper, we propose a novel Evidence Fusing Graph Neural Network (EFGNN for short) to achieve trustworthy prediction, enhance node classification accuracy, and make explicit the risk of wrong predictions. In particular, we integrate the evidence theory with multi-hop propagation-based GNN architecture to quantify the prediction uncertainty of each node with the consideration of multiple receptive fields. Moreover, a parameter-free cumulative belief fusion (CBF) mechanism is developed to leverage the changes in prediction uncertainty and fuse the evidence to improve the trustworthiness of the final prediction. To effectively optimize the EFGNN model, we carefully design a joint learning objective composed of evidence cross-entropy, dissonance coefficient, and false confident penalty. The experimental results on various datasets and theoretical analyses demonstrate the effectiveness of the proposed model in terms of accuracy and trustworthiness, as well as its robustness to potential attacks. The source code of EFGNN is available at https://github.com/Shiy-Li/EFGNN.

Repos / Data Links

Page Count
14 pages

Category
Computer Science:
Machine Learning (CS)