RelTopo: Enhancing Relational Modeling for Driving Scene Topology Reasoning
By: Yueru Luo , Changqing Zhou , Yiming Yang and more
Potential Business Impact:
Helps self-driving cars understand roads better.
Accurate road topology reasoning is critical for autonomous driving, enabling effective navigation and adherence to traffic regulations. Central to this task are lane perception and topology reasoning. However, existing methods typically focus on either lane detection or Lane-to-Lane (L2L) topology reasoning, often \textit{neglecting} Lane-to-Traffic-element (L2T) relationships or \textit{failing} to optimize these tasks jointly. Furthermore, most approaches either overlook relational modeling or apply it in a limited scope, despite the inherent spatial relationships among road elements. We argue that relational modeling is beneficial for both perception and reasoning, as humans naturally leverage contextual relationships for road element recognition and their connectivity inference. To this end, we introduce relational modeling into both perception and reasoning, \textit{jointly} enhancing structural understanding. Specifically, we propose: 1) a relation-aware lane detector, where our geometry-biased self-attention and \curve\ cross-attention refine lane representations by capturing relational dependencies; 2) relation-enhanced topology heads, including a geometry-enhanced L2L head and a cross-view L2T head, boosting reasoning with relational cues; and 3) a contrastive learning strategy with InfoNCE loss to regularize relationship embeddings. Extensive experiments on OpenLane-V2 demonstrate that our approach significantly improves both detection and topology reasoning metrics, achieving +3.1 in DET$_l$, +5.3 in TOP$_{ll}$, +4.9 in TOP$_{lt}$, and an overall +4.4 in OLS, setting a new state-of-the-art. Code will be released.
Similar Papers
RATopo: Improving Lane Topology Reasoning via Redundancy Assignment
CV and Pattern Recognition
Helps self-driving cars understand road lanes better.
A Concise Survey on Lane Topology Reasoning for HD Mapping
Robotics
Helps self-driving cars understand road layouts.
Fine-Grained Representation for Lane Topology Reasoning
CV and Pattern Recognition
Helps self-driving cars understand road lanes better.