Score: 0

A multi-stage augmented multimodal interaction network for fish feeding intensity quantification

Published: June 17, 2025 | arXiv ID: 2506.14170v1

By: Shulong Zhang , Mingyuan Yao , Jiayin Zhao and more

Potential Business Impact:

Helps fish farms feed fish just right.

Business Areas:
Aquaculture Agriculture and Farming

In recirculating aquaculture systems, accurate and effective assessment of fish feeding intensity is crucial for reducing feed costs and calculating optimal feeding times. However, current studies have limitations in modality selection, feature extraction and fusion, and co-inference for decision making, which restrict further improvement in the accuracy, applicability and reliability of multimodal fusion models. To address this problem, this study proposes a Multi-stage Augmented Multimodal Interaction Network (MAINet) for quantifying fish feeding intensity. Firstly, a general feature extraction framework is proposed to efficiently extract feature information from input image, audio and water wave datas. Second, an Auxiliary-modality Reinforcement Primary-modality Mechanism (ARPM) is designed for inter-modal interaction and generate enhanced features, which consists of a Channel Attention Fusion Network (CAFN) and a Dual-mode Attention Fusion Network (DAFN). Finally, an Evidence Reasoning (ER) rule is introduced to fuse the output results of each modality and make decisions, thereby completing the quantification of fish feeding intensity. The experimental results show that the constructed MAINet reaches 96.76%, 96.78%, 96.79% and 96.79% in accuracy, precision, recall and F1-Score respectively, and its performance is significantly higher than the comparison models. Compared with models that adopt single-modality, dual-modality fusion and different decision-making fusion methods, it also has obvious advantages. Meanwhile, the ablation experiments further verified the key role of the proposed improvement strategy in improving the robustness and feature utilization efficiency of model, which can effectively improve the accuracy of the quantitative results of fish feeding intensity.

Page Count
23 pages

Category
Computer Science:
CV and Pattern Recognition