Score: 0

Improving Robotic Manipulation: Techniques for Object Pose Estimation, Accommodating Positional Uncertainty, and Disassembly Tasks from Examples

Published: June 18, 2025 | arXiv ID: 2506.15865v1

By: Viral Rasik Galaiya

Potential Business Impact:

Robots feel objects to grab them better.

Business Areas:
Robotics Hardware, Science and Engineering, Software

To use robots in more unstructured environments, we have to accommodate for more complexities. Robotic systems need more awareness of the environment to adapt to uncertainty and variability. Although cameras have been predominantly used in robotic tasks, the limitations that come with them, such as occlusion, visibility and breadth of information, have diverted some focus to tactile sensing. In this thesis, we explore the use of tactile sensing to determine the pose of the object using the temporal features. We then use reinforcement learning with tactile collisions to reduce the number of attempts required to grasp an object resulting from positional uncertainty from camera estimates. Finally, we use information provided by these tactile sensors to a reinforcement learning agent to determine the trajectory to take to remove an object from a restricted passage while reducing training time by pertaining from human examples.

Page Count
102 pages

Category
Computer Science:
Robotics