Score: 0

AutoV: Learning to Retrieve Visual Prompt for Large Vision-Language Models

Published: June 19, 2025 | arXiv ID: 2506.16112v1

By: Yuan Zhang , Chun-Kai Fan , Tao Huang and more

Potential Business Impact:

Helps computers understand pictures better by choosing the best hints.

Business Areas:
Visual Search Internet Services

Inspired by text prompts in large language models (LLMs), visual prompts have been explored to enhance the reasoning capabilities of large vision-language models (LVLMs). Current methods design heuristic visual prompts, such as overlaying a text-query-guided attention heatmap on the original input image. However, designing effective prompts manually is challenging and time-consuming, and it often fails to explore the benefits of different visual prompts, leading to sub-optimal performance. To this end, we propose \textbf{AutoV} that learns to automatically select the optimal visual prompt from various candidates based on given textual queries and the input image. To train AutoV, we developed an automatic data collection and labeling pipeline that evaluates various visual prompts with a pre-trained LVLM. We input a set of visual prompts into the LVLM and rank them according to the prediction losses generated by the model. Using the ranking as a supervision signal, we train AutoV to automatically choose the optimal visual prompt from various visual prompts for LVLMs. Experimental results indicate that AutoV enhances the performance of various LVLMs across multiple popular image understanding tasks. For instance, LLaVA-OV with AutoV achieves $\textbf{1.7}\%$ accuracy gain on LLaVA$^{\text{Wild}}$, and AutoV boosts Qwen2.5-VL by $\textbf{1.9}\%$ on MMMU, highlighting its potential as an optimal visual prompting method for LVLMs.

Country of Origin
🇨🇳 China

Page Count
19 pages

Category
Computer Science:
CV and Pattern Recognition