Mixture of Reasonings: Teach Large Language Models to Reason with Adaptive Strategies
By: Tao Xiong , Xavier Hu , Wenyan Fan and more
Potential Business Impact:
Computers learn to solve problems without needing instructions.
Large language models (LLMs) excel in complex tasks through advanced prompting techniques like Chain-of-Thought (CoT) and Tree-of-Thought (ToT), but their reliance on manually crafted, task-specific prompts limits adaptability and efficiency. We introduce Mixture of Reasoning (MoR), a training framework that embeds diverse reasoning strategies into LLMs for autonomous, task-adaptive reasoning without external prompt engineering. MoR has two phases: Thought Generation, creating reasoning chain templates with models like GPT-4o, and SFT Dataset Construction, pairing templates with benchmark datasets for supervised fine-tuning. Our experiments show that MoR significantly enhances performance, with MoR150 achieving 0.730 (2.2% improvement) using CoT prompting and 0.734 (13.5% improvement) compared to baselines. MoR eliminates the need for task-specific prompts, offering a generalizable solution for robust reasoning across diverse tasks.
Similar Papers
From Perception to Reasoning: Deep Thinking Empowers Multimodal Large Language Models
Computation and Language
Helps AI "think step-by-step" to solve harder problems.
From Perception to Reasoning: Deep Thinking Empowers Multimodal Large Language Models
Computation and Language
Helps AI "think" step-by-step to solve harder problems.
Cognitive-Mental-LLM: Evaluating Reasoning in Large Language Models for Mental Health Prediction via Online Text
Computation and Language
Helps computers understand mental health from online words.