Hardness of Quantum Distribution Learning and Quantum Cryptography
By: Taiga Hiroka, Min-Hsiu Hsieh, Tomoyuki Morimae
Potential Business Impact:
Makes secret codes harder to break using quantum rules.
The existence of one-way functions (OWFs) forms the minimal assumption in classical cryptography. However, this is not necessarily the case in quantum cryptography. One-way puzzles (OWPuzzs), introduced by Khurana and Tomer, provide a natural quantum analogue of OWFs. The existence of OWPuzzs implies $PP\neq BQP$, while the converse remains open. In classical cryptography, the analogous problem-whether OWFs can be constructed from $P \neq NP$-has long been studied from the viewpoint of hardness of learning. Hardness of learning in various frameworks (including PAC learning) has been connected to OWFs or to $P \neq NP$. In contrast, no such characterization previously existed for OWPuzzs. In this paper, we establish the first complete characterization of OWPuzzs based on the hardness of a well-studied learning model: distribution learning. Specifically, we prove that OWPuzzs exist if and only if proper quantum distribution learning is hard on average. A natural question that follows is whether the worst-case hardness of proper quantum distribution learning can be derived from $PP \neq BQP$. If so, and a worst-case to average-case hardness reduction is achieved, it would imply OWPuzzs solely from $PP \neq BQP$. However, we show that this would be extremely difficult: if worst-case hardness is PP-hard (in a black-box reduction), then $SampBQP \neq SampBPP$ follows from the infiniteness of the polynomial hierarchy. Despite that, we show that $PP \neq BQP$ is equivalent to another standard notion of hardness of learning: agnostic. We prove that $PP \neq BQP$ if and only if agnostic quantum distribution learning with respect to KL divergence is hard. As a byproduct, we show that hardness of agnostic quantum distribution learning with respect to statistical distance against $PPT^{\Sigma_3^P}$ learners implies $SampBQP \neq SampBPP$.
Similar Papers
Quantum Cryptography and Hardness of Non-Collapsing Measurements
Quantum Physics
Makes secret codes that are hard to break.
From Worst-Case Hardness of $\mathsf{NP}$ to Quantum Cryptography via Quantum Indistinguishability Obfuscation
Quantum Physics
Makes secret computer codes unbreakable, even with quantum computers.
The Hardness of Learning Quantum Circuits and its Cryptographic Applications
Quantum Physics
Makes secret codes safe using tricky quantum computer tricks.