Score: 1

Depth Anything at Any Condition

Published: July 2, 2025 | arXiv ID: 2507.01634v1

By: Boyuan Sun , Modi Jin , Bowen Yin and more

Potential Business Impact:

Helps computers see depth in any weather.

Business Areas:
Image Recognition Data and Analytics, Software

We present Depth Anything at Any Condition (DepthAnything-AC), a foundation monocular depth estimation (MDE) model capable of handling diverse environmental conditions. Previous foundation MDE models achieve impressive performance across general scenes but not perform well in complex open-world environments that involve challenging conditions, such as illumination variations, adverse weather, and sensor-induced distortions. To overcome the challenges of data scarcity and the inability of generating high-quality pseudo-labels from corrupted images, we propose an unsupervised consistency regularization finetuning paradigm that requires only a relatively small amount of unlabeled data. Furthermore, we propose the Spatial Distance Constraint to explicitly enforce the model to learn patch-level relative relationships, resulting in clearer semantic boundaries and more accurate details. Experimental results demonstrate the zero-shot capabilities of DepthAnything-AC across diverse benchmarks, including real-world adverse weather benchmarks, synthetic corruption benchmarks, and general benchmarks. Project Page: https://ghost233lism.github.io/depthanything-AC-page Code: https://github.com/HVision-NKU/DepthAnythingAC

Repos / Data Links

Page Count
23 pages

Category
Computer Science:
CV and Pattern Recognition