Score: 0

An Experimental Approach for Running-Time Estimation of Multi-objective Evolutionary Algorithms in Numerical Optimization

Published: July 3, 2025 | arXiv ID: 2507.02372v1

By: Han Huang , Tianyu Wang , Chaoda Peng and more

Potential Business Impact:

Estimates how long computer programs will take to solve problems.

Business Areas:
A/B Testing Data and Analytics

Multi-objective evolutionary algorithms (MOEAs) have become essential tools for solving multi-objective optimization problems (MOPs), making their running time analysis crucial for assessing algorithmic efficiency and guiding practical applications. While significant theoretical advances have been achieved for combinatorial optimization, existing studies for numerical optimization primarily rely on algorithmic or problem simplifications, limiting their applicability to real-world scenarios. To address this gap, we propose an experimental approach for estimating upper bounds on the running time of MOEAs in numerical optimization without simplification assumptions. Our approach employs an average gain model that characterizes algorithmic progress through the Inverted Generational Distance metric. To handle the stochastic nature of MOEAs, we use statistical methods to estimate the probabilistic distribution of gains. Recognizing that gain distributions in numerical optimization exhibit irregular patterns with varying densities across different regions, we introduce an adaptive sampling method that dynamically adjusts sampling density to ensure accurate surface fitting for running time estimation. We conduct comprehensive experiments on five representative MOEAs (NSGA-II, MOEA/D, AR-MOEA, AGEMOEA-II, and PREA) using the ZDT and DTLZ benchmark suites. The results demonstrate the effectiveness of our approach in estimating upper bounds on the running time without requiring algorithmic or problem simplifications. Additionally, we provide a web-based implementation to facilitate broader adoption of our methodology. This work provides a practical complement to theoretical research on MOEAs in numerical optimization.

Page Count
14 pages

Category
Computer Science:
Neural and Evolutionary Computing