On the Mathematical Impossibility of Safe Universal Approximators
By: Jasper Yao
Potential Business Impact:
Computers can't be perfectly controlled.
We establish fundamental mathematical limits on universal approximation theorem (UAT) system alignment by proving that catastrophic failures are an inescapable feature of any useful computational system. Our central thesis is that for any universal approximator, the expressive power required for useful computation is inextricably linked to a dense set of instabilities that make perfect, reliable control a mathematical impossibility. We prove this through a three-level argument that leaves no escape routes for any class of universal approximator architecture. i) Combinatorial Necessity: For the vast majority of practical universal approximators (e.g., those using ReLU activations), we prove that the density of catastrophic failure points is directly proportional to the network's expressive power. ii) Topological Necessity: For any theoretical universal approximator, we use singularity theory to prove that the ability to approximate generic functions requires the ability to implement the dense, catastrophic singularities that characterize them. iii) Empirical Necessity: We prove that the universal existence of adversarial examples is empirical evidence that real-world tasks are themselves catastrophic, forcing any successful model to learn and replicate these instabilities. These results, combined with a quantitative "Impossibility Sandwich" showing that the minimum complexity for usefulness exceeds the maximum complexity for safety, demonstrate that perfect alignment is not an engineering challenge but a mathematical impossibility. This foundational result reframes UAT safety from a problem of "how to achieve perfect control" to one of "how to operate safely in the presence of irreducible uncontrollability," with profound implications for the future of UAT development and governance.
Similar Papers
Beyond Universal Approximation Theorems: Algorithmic Uniform Approximation by Neural Networks Trained with Noisy Data
Machine Learning (Stat)
Teaches computers to learn from messy information.
Floating-Point Neural Networks Are Provably Robust Universal Approximators
Machine Learning (CS)
Computers can learn any task, even with mistakes.
The Alignment Trap: Complexity Barriers
Artificial Intelligence
Makes AI safety impossible to guarantee.