Quantum Stochastic Walks for Portfolio Optimization: Theory and Implementation on Financial Networks
By: Yen Jui Chang , Wei-Ting Wang , Yun-Yuan Wang and more
Potential Business Impact:
Makes investing smarter, cutting costs and risk.
Financial markets are noisy yet contain a latent graph-theoretic structure that can be exploited for superior risk-adjusted returns. We propose a quantum stochastic walk (QSW) optimizer that embeds assets in a weighted graph: nodes represent securities while edges encode the return-covariance kernel. Portfolio weights are derived from the walk's stationary distribution. Three empirical studies support the approach. (i) For the top 100 S\&P 500 constituents over 2016-2024, six scenario portfolios calibrated on 1- and 2-year windows lift the out-of-sample Sharpe ratio by up to 27\% while cutting annual turnover from 480\% (mean-variance) to 2-90%. (ii) A $5^{4}=625$-point grid search identifies a robust sweet spot, $α,λ\lesssim0.5$ and $ω\in[0.2,0.4]$, that delivers Sharpe $\approx0.97$ at $\le 5\%$ turnover and Herfindahl-Hirschman index $\sim0.01$. (iii) Repeating the full grid on 50 random 100-stock subsets of the S\&P 500 adds 31\,350 back-tests: the best-per-draw QSW beats re-optimised mean-variance on Sharpe in 54\% of cases and always wins on trading efficiency, with median turnover 36\% versus 351\%. Overall, QSW raises the annualized Sharpe ratio by 15\% and cuts turnover by 90\% relative to classical optimisation, all while respecting the UCITS 5/10/40 rule. These results show that hybrid quantum-classical dynamics can uncover non-linear dependencies overlooked by quadratic models and offer a practical, low-cost weighting engine for themed ETFs and other systematic mandates.
Similar Papers
Quantum Stochastic Walks for Portfolio Optimization: Theory and Implementation on Financial Networks
Portfolio Management
Makes investing smarter, reducing risk and cost.
Signed network models for portfolio optimization
Portfolio Management
Makes investing safer by finding hidden money patterns.
End-to-End Portfolio Optimization with Quantum Annealing
Quantum Physics
Makes investments grow faster and smarter.