Score: 0

TopoMAS: Large Language Model Driven Topological Materials Multiagent System

Published: July 5, 2025 | arXiv ID: 2507.04053v1

By: Baohua Zhang , Xin Li , Huangchao Xu and more

Potential Business Impact:

Finds new materials faster using smart computers.

Business Areas:
Semantic Web Internet Services

Topological materials occupy a frontier in condensed-matter physics thanks to their remarkable electronic and quantum properties, yet their cross-scale design remains bottlenecked by inefficient discovery workflows. Here, we introduce TopoMAS (Topological materials Multi-Agent System), an interactive human-AI framework that seamlessly orchestrates the entire materials-discovery pipeline: from user-defined queries and multi-source data retrieval, through theoretical inference and crystal-structure generation, to first-principles validation. Crucially, TopoMAS closes the loop by autonomously integrating computational outcomes into a dynamic knowledge graph, enabling continuous knowledge refinement. In collaboration with human experts, it has already guided the identification of novel topological phases SrSbO3, confirmed by first-principles calculations. Comprehensive benchmarks demonstrate robust adaptability across base Large Language Model, with the lightweight Qwen2.5-72B model achieving 94.55% accuracy while consuming only 74.3-78.4% of tokens required by Qwen3-235B and 83.0% of DeepSeek-V3's usage--delivering responses twice as fast as Qwen3-235B. This efficiency establishes TopoMAS as an accelerator for computation-driven discovery pipelines. By harmonizing rational agent orchestration with a self-evolving knowledge graph, our framework not only delivers immediate advances in topological materials but also establishes a transferable, extensible paradigm for materials-science domain.

Country of Origin
🇨🇳 China

Page Count
13 pages

Category
Condensed Matter:
Materials Science