Score: 0

Explainable Hierarchical Deep Learning Neural Networks (Ex-HiDeNN)

Published: July 7, 2025 | arXiv ID: 2507.05498v1

By: Reza T. Batley , Chanwook Park , Wing Kam Liu and more

Potential Business Impact:

Finds simple math rules from messy data.

Business Areas:
Intelligent Systems Artificial Intelligence, Data and Analytics, Science and Engineering

Data-driven science and computation have advanced immensely to construct complex functional relationships using trainable parameters. However, efficiently discovering interpretable and accurate closed-form expressions from complex dataset remains a challenge. The article presents a novel approach called Explainable Hierarchical Deep Learning Neural Networks or Ex-HiDeNN that uses an accurate, frugal, fast, separable, and scalable neural architecture with symbolic regression to discover closed-form expressions from limited observation. The article presents the two-step Ex-HiDeNN algorithm with a separability checker embedded in it. The accuracy and efficiency of Ex-HiDeNN are tested on several benchmark problems, including discerning a dynamical system from data, and the outcomes are reported. Ex-HiDeNN generally shows outstanding approximation capability in these benchmarks, producing orders of magnitude smaller errors compared to reference data and traditional symbolic regression. Later, Ex-HiDeNN is applied to three engineering applications: a) discovering a closed-form fatigue equation, b) identification of hardness from micro-indentation test data, and c) discovering the expression for the yield surface with data. In every case, Ex-HiDeNN outperformed the reference methods used in the literature. The proposed method is built upon the foundation and published works of the authors on Hierarchical Deep Learning Neural Network (HiDeNN) and Convolutional HiDeNN. The article also provides a clear idea about the current limitations and future extensions of Ex-HiDeNN.

Page Count
26 pages

Category
Computer Science:
Machine Learning (CS)