Score: 1

A Language-Driven Framework for Improving Personalized Recommendations: Merging LLMs with Traditional Algorithms

Published: July 9, 2025 | arXiv ID: 2507.07251v1

By: Aaron Goldstein, Ayan Dutta

Potential Business Impact:

Recommends movies like a friend who knows you.

Business Areas:
Personalization Commerce and Shopping

Traditional recommendation algorithms are not designed to provide personalized recommendations based on user preferences provided through text, e.g., "I enjoy light-hearted comedies with a lot of humor". Large Language Models (LLMs) have emerged as one of the most promising tools for natural language processing in recent years. This research proposes a novel framework that mimics how a close friend would recommend items based on their knowledge of an individual's tastes. We leverage LLMs to enhance movie recommendation systems by refining traditional algorithm outputs and integrating them with language-based user preference inputs. We employ Singular Value Decomposition (SVD) or SVD++ algorithms to generate initial movie recommendations, implemented using the Surprise Python library and trained on the MovieLens-Latest-Small dataset. We compare the performance of the base algorithms with our LLM-enhanced versions using leave-one-out validation hit rates and cumulative hit rates. Additionally, to compare the performance of our framework against the current state-of-the-art recommendation systems, we use rating and ranking metrics with an item-based stratified 0.75 train, 0.25 test split. Our framework can generate preference profiles automatically based on users' favorite movies or allow manual preference specification for more personalized results. Using an automated approach, our framework overwhelmingly surpassed SVD and SVD++ on every evaluation metric used (e.g., improvements of up to ~6x in cumulative hit rate, ~3.7x in NDCG, etc.), albeit at the cost of a slight increase in computational overhead.

Country of Origin
🇺🇸 United States

Page Count
9 pages

Category
Computer Science:
Information Retrieval