Overview of the TREC 2021 deep learning track
By: Nick Craswell , Bhaskar Mitra , Emine Yilmaz and more
Potential Business Impact:
Helps computers find information better and faster.
This is the third year of the TREC Deep Learning track. As in previous years, we leverage the MS MARCO datasets that made hundreds of thousands of human annotated training labels available for both passage and document ranking tasks. In addition, this year we refreshed both the document and the passage collections which also led to a nearly four times increase in the document collection size and nearly $16$ times increase in the size of the passage collection. Deep neural ranking models that employ large scale pretraininig continued to outperform traditional retrieval methods this year. We also found that single stage retrieval can achieve good performance on both tasks although they still do not perform at par with multistage retrieval pipelines. Finally, the increase in the collection size and the general data refresh raised some questions about completeness of NIST judgments and the quality of the training labels that were mapped to the new collections from the old ones which we discuss in this report.
Similar Papers
Overview of the TREC 2022 deep learning track
Information Retrieval
Finds better answers in huge amounts of text.
Overview of the TREC 2023 deep learning track
Information Retrieval
Lets computers find answers better using smart text.
Overview of the TREC 2024 NeuCLIR Track
Information Retrieval
Helps computers find information in different languages.