Score: 0

Massively parallel and universal approximation of nonlinear functions using diffractive processors

Published: July 11, 2025 | arXiv ID: 2507.08253v1

By: Md Sadman Sakib Rahman , Yuhang Li , Xilin Yang and more

Potential Business Impact:

Computers use light to do math faster.

Business Areas:
Laser Hardware, Science and Engineering

Nonlinear computation is essential for a wide range of information processing tasks, yet implementing nonlinear functions using optical systems remains a challenge due to the weak and power-intensive nature of optical nonlinearities. Overcoming this limitation without relying on nonlinear optical materials could unlock unprecedented opportunities for ultrafast and parallel optical computing systems. Here, we demonstrate that large-scale nonlinear computation can be performed using linear optics through optimized diffractive processors composed of passive phase-only surfaces. In this framework, the input variables of nonlinear functions are encoded into the phase of an optical wavefront, e.g., via a spatial light modulator (SLM), and transformed by an optimized diffractive structure with spatially varying point-spread functions to yield output intensities that approximate a large set of unique nonlinear functions, all in parallel. We provide proof establishing that this architecture serves as a universal function approximator for an arbitrary set of bandlimited nonlinear functions, also covering multi-variate and complex-valued functions. We also numerically demonstrate the parallel computation of one million distinct nonlinear functions, accurately executed at wavelength-scale spatial density at the output of a diffractive optical processor. Furthermore, we experimentally validated this framework using in situ optical learning and approximated 35 unique nonlinear functions in a single shot using a compact setup consisting of an SLM and an image sensor. These results establish diffractive optical processors as a scalable platform for massively parallel universal nonlinear function approximation, paving the way for new capabilities in analog optical computing based on linear materials.

Country of Origin
🇺🇸 United States

Page Count
28 pages

Category
Physics:
Optics