Score: 0

Multi-omic Prognosis of Alzheimer's Disease with Asymmetric Cross-Modal Cross-Attention Network

Published: July 9, 2025 | arXiv ID: 2507.08855v1

By: Yang Ming, Jiang Shi Zhong, Zhou Su Juan

Potential Business Impact:

Finds Alzheimer's early using brain scans and data.

Business Areas:
Image Recognition Data and Analytics, Software

Alzheimer's Disease (AD) is an irreversible neurodegenerative disease characterized by progressive cognitive decline as its main symptom. In the research field of deep learning-assisted diagnosis of AD, traditional convolutional neural networks and simple feature concatenation methods fail to effectively utilize the complementary information between multimodal data, and the simple feature concatenation approach is prone to cause the loss of key information during the process of modal fusion. In recent years, the development of deep learning technology has brought new possibilities for solving the problem of how to effectively fuse multimodal features. This paper proposes a novel deep learning algorithm framework to assist medical professionals in AD diagnosis. By fusing medical multi-view information such as brain fluorodeoxyglucose positron emission tomography (PET), magnetic resonance imaging (MRI), genetic data, and clinical data, it can accurately detect the presence of AD, Mild Cognitive Impairment (MCI), and Cognitively Normal (CN). The innovation of the algorithm lies in the use of an asymmetric cross-modal cross-attention mechanism, which can effectively capture the key information features of the interactions between different data modal features. This paper compares the asymmetric cross-modal cross-attention mechanism with the traditional algorithm frameworks of unimodal and multimodal deep learning models for AD diagnosis, and evaluates the importance of the asymmetric cross-modal cross-attention mechanism. The algorithm model achieves an accuracy of 94.88% on the test set.

Page Count
10 pages

Category
Electrical Engineering and Systems Science:
Image and Video Processing